Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

cis-Diammine(glycolato- $\kappa^{2} O^{1}, O^{2}$)platinum(II)

Qing-Kun Wang, ${ }^{\text {a }}$ Shao-Ping Pu, ${ }^{\text {b,c* }}$ Yan-Wei Cong, ${ }^{\text {b }}$ Yong-Nian Li ${ }^{\text {b }}$ and Chun-Fang Luan ${ }^{\text {b }}$
${ }^{\text {a }}$ Kunming Institute of Precious Metals, Kunming 650106, People's Republic of China, ${ }^{\text {b }}$ Kunming IPM Pharmaceutical Co Ltd, Department of Materials, Kunming University of Science and Technology, Kunming 650106, People's Republic of China, and ${ }^{\mathrm{c}}$ Engineering School of Materials and Metallurgy, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
Correspondence e-mail: JRSS1979@163.COM

Received 3 March 2009; accepted 20 November 2009
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; R factor $=0.020 ; w R$ factor $=0.042 ;$ data-to-parameter ratio $=17.8$.

The reaction of cis- $\left[\mathrm{Pt}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ and sodium glycolate yielded the title compound, $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]$. The $\mathrm{Pt}^{\mathrm{II}}$ atom, coordinated by two N atoms of ammine and two O atoms of the carboxylate and oxido groups of the glycolate ligand, is in a square-planar environment. In the crystal structure, molecules are connected by intermolecular N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a three-dimensional network.

Related literature

The title compound is a second-generation platinum derivative that has an antitumour activity comparable to that of cisplatin, one of the most effective anti-cancer drugs for testicular, lung, bladder and other carcinomas, but which is less toxic to the kidney, see: Inuyama et al. (1992); Kameyama et al. (1990); Noda et al. (1992); Taguchi et al. (1992); Yamamoto et al. (2000). For related structures, see: Yuge \& Miyamoto (1998); Griffith et al. (2007).

Experimental

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]} \\
& M r=303.19 \\
& \text { Orthorhombic, } P 2_{1} 2_{1} 2_{1} \\
& a=5.6293(6) \AA \\
& b=7.2853(8) \AA \\
& c=14.1107(16) \AA
\end{aligned}
$$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.068, T_{\text {max }}=0.196$
3739 measured reflections 1354 independent reflections 1307 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.034$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.042$
$S=0.99$
1354 reflections
76 parameters
$\Delta \rho_{\text {max }}=1.24 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.10 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
489 Friedel pairs
Flack parameter: 0.013 (17)

H -atom parameters constrained

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{O}^{\mathrm{i}}$	0.89	2.01	$2.883(8)$	167
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.89	2.44	$3.107(7)$	132
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{iii}}$	0.89	2.45	$3.049(7)$	125
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots 3^{\text {iv }}$	0.89	2.00	$2.888(7)$	173
$\mathrm{~N} 2-\mathrm{H} 2 C \cdots \mathrm{O}^{\mathrm{v}}$	0.89	2.32	$3.108(7)$	147
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.89	2.21	$3.014(8)$	150
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots 3^{\text {iii }}$	0.89	2.26	$3.010(7)$	142

Symmetry codes: (i) $x+1, y, z$; (ii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x+\frac{1}{2},-y+2, z+\frac{1}{2}$; (iv) $x+\frac{1}{2},-y+\frac{3}{2},-z ;(\mathrm{v})-x-\frac{1}{2},-y+2, z+\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Kunming Innovation Fund for Technology, Kunming IPM Pharmaceutical Co Ltd (08 G100110).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2056).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Griffith, D., Bergamo, A., Pin, S., Vadori, M., Helge, M. B., Sava, G. \& Marmion, C. (2007). Polyhedron, 26, 4697-4706.
Inuyama, Y., Miyake, H., Horiuchi, M., Hayasaki, K., Komiyama, S. \& Ota, K. (1992). Gan To Kagaku Ryoho, 19, 871-877.

Kameyama, Y., Okazaki, N., Nakagawa, M., Koshida, H., Nakamura, M. \& Gemba, M. (1990). Toxicol. Lett. 52, 15-24.
Noda, K., Ikeda, M., Yakushiji, M., Nishimura, H., Terashima, Y., Sasaki, H., Hata, T., Kuramoto, H., Tanaka, K., Takahashi, T., Hirabayashi, K., Yamabe, T. \& Hatae, M. (1992). Gan To Kagaku Ryoho, 19, 885-892.

Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Taguchi, T., Wakui, A., Nabeya, K., Kurihara, M., Isono, K., Kakegawa, T. \& Oka, K. (1992). Gan To Kagaku Ryoho, 19, 483-488.
Yamamoto, N., Tamura, T., Kurata, T., Yamamoto, N., Sekine, I., Kunitoh, H., Kodama, T. \& Saijo, N. (2000). Proc. Am. Soc. Clin. Oncol. 19, 203a (abstr 792).

Yuge, H. \& Miyamoto, T. K. (1998). Inorg. Chim. Acta, 297, 105-110.

supplementary materials

cis-Diammine(glycolato- $\left.\kappa^{2} O^{1}, O^{2}\right)$ platinum(II)

Q.-K. Wang, S.-P. Pu, Y.-W. Cong, Y.-N. Li and C.-F. Luan

Comment

Cis-diamminedichloro-platinum(II) (cisplatin) is one of the most effective anti-cancer drugs for testicular, lung, bladder and other carcinomas. However, the clinical usefulness of this drug has frequently been limited by serious nephrotoxicity and gastrointestinal toxicity and the development of acquired resistance. In an attempt to overcome these drawbacks of cisplatin, numerous analogues have been prepared and evaluated in a search for alternative active agents. Among these compounds, the title compound, cis-diammine(glycolato-o,o')platinum(II), is a second-generation platinum derivative that has an antitumour activity comparable to cisplatin but is less toxic to the kidney (Kameyama et al.,1990), as seen in preclinical experiments. It produced promising response rates in phase II trials for treatment of squamous cell carcinoma arising from the head and neck (Inuyama et al.,1992), lung (Yamamoto et al.,2000), oesophagus (Taguchi et al.,1992), and uterine cervix (Noda et al., 1992). For related structures see: (Yuge \& Miyamoto, 1998; Griffith et al., 2007) The compound forms a hydrogen-bonded structure (Fig. 2), in which one of the H atoms of ammonia serves as a donor to the O atom of the glycollate of an adjacent molecule and these hydrogen-bond interactions give rise to a three-dimensional network.

Experimental

Cis-[$\left.\mathrm{Pt}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right](2.0 \mathrm{nmol})$ was dissolved in 50 ml water and sodium glycolate (2.0 mmol in 50 ml water) was added thereto. The mixture was adjusted to $\mathrm{pH}=7$ with NaOH solution and stirred at 323 k for 3 h . The solution was condensed at 313 k under reduced pressure to 5 ml , then a yellow crystalline product was precipitated. The compound was crystallized from water to obtain crystals suitable for X-ray structure analysis.

Refinement

All H atoms were initially located in a difference Fourier map. The H atoms bonded to carbon and nitrogen were placed at calculated positions $(\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.89 \AA)$ and were included in the refinement in the riding model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C}), U_{\text {iso }}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{N})$.

Figures

Fig. 1. The molecular structure of title complex with the atomic labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

supplementary materials

Fig. 2. The crystal packing, showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond network. Only the H atoms involved in hydrogen bonding are shown. Hydrogen bonds are shown as dashed lines.

cis-Diammine(glycolato- ${ }^{2} O^{1}, O^{2}$)platinum(II)

Crystal data

$\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]$
$M_{r}=303.19$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.6293$ (6) \AA
$b=7.2853$ (8) \AA
$c=14.1107(16) \AA$
$V=578.70(11) \AA^{3}$
$Z=4$
$F(000)=544$

Data collection

Bruker APEXII CCD area-detector diffractometer

Radiation source: fine-focus sealed tube graphite
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.068, T_{\text {max }}=0.196$
3739 measured reflections
$D_{\mathrm{x}}=3.480 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1354 reflections
$\theta=2.9-28.3^{\circ}$
$\mu=24.17 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colourless
$0.24 \times 0.12 \times 0.10 \mathrm{~mm}$

1354 independent reflections
1307 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-6 \rightarrow 7$
$k=-9 \rightarrow 9$
$l=-17 \rightarrow 18$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0103 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=1.24 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-1.10$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Flack parameter: 0.013 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }}^{*} / U_{\text {eq }}$
Pt1	$0.10734(4)$	$0.96205(3)$	$0.178777(16)$	$0.01860(9)$
N2	$0.0429(10)$	$0.9713(9)$	$0.3193(4)$	$0.0310(12)$
H2A	0.1574	1.0347	0.3479	0.047^{*}
H2B	0.0392	0.8577	0.3424	0.047^{*}
H2C	-0.0964	1.0256	0.3296	0.047^{*}
N1	$0.4267(10)$	$0.8432(8)$	$0.2082(3)$	$0.0272(13)$
H1A	0.4471	0.7457	0.1711	0.041^{*}
H1B	0.4298	0.8085	0.2686	0.041^{*}
H1C	0.5427	0.9237	0.1976	0.041^{*}
O1	$0.1557(8)$	$0.9447(7)$	$0.0377(3)$	$0.0308(11)$
O2	$-0.2005(8)$	$1.0830(7)$	$0.1425(3)$	$0.0263(11)$
C1	$-0.0264(12)$	$0.9948(9)$	$-0.0099(4)$	$0.0230(15)$
C2	$-0.2372(12)$	$1.0639(11)$	$0.0439(5)$	$0.0332(17)$
H2E	-0.2827	1.1823	0.0182	0.040^{*}
H2D	-0.3688	0.9803	0.0337	0.040^{*}
O3	$-0.0334(8)$	$0.9898(7)$	$-0.0983(3)$	$0.0288(11)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt 1	$0.02166(13)$	$0.02149(13)$	$0.01266(12)$	$-0.00028(10)$	$-0.00029(9)$	$0.00010(9)$
N 2	$0.030(3)$	$0.043(3)$	$0.020(3)$	$0.003(2)$	$0.001(2)$	$-0.003(3)$
N 1	$0.033(3)$	$0.036(3)$	$0.012(2)$	$0.010(3)$	$0.005(2)$	$0.003(2)$
O 1	$0.028(3)$	$0.046(3)$	$0.018(2)$	$0.004(2)$	$0.0023(19)$	$-0.006(2)$
O 2	$0.027(2)$	$0.038(3)$	$0.014(2)$	$0.008(2)$	$-0.0030(18)$	$-0.0067(19)$
C 1	$0.027(3)$	$0.024(4)$	$0.018(3)$	$-0.003(2)$	$0.003(2)$	$0.003(2)$
C 2	$0.032(4)$	$0.052(5)$	$0.016(3)$	$0.011(3)$	$-0.002(3)$	$-0.004(3)$
O 3	$0.036(3)$	$0.038(3)$	$0.012(2)$	$-0.002(2)$	$-0.0002(18)$	$-0.0005(19)$

Geometric parameters (A, ${ }^{\circ}$)

$\mathrm{Pt} 1-\mathrm{O} 2$	2.010 (5)	N1-H1B	0.8900
$\mathrm{Pt} 1-\mathrm{O} 1$	2.013 (4)	N1-H1C	0.8900
$\mathrm{Pt} 1-\mathrm{N} 2$	2.017 (5)	O1-C1	1.279 (8)
$\mathrm{Pt1}-\mathrm{N} 1$	2.038 (5)	$\mathrm{O} 2-\mathrm{C} 2$	1.413 (7)
N2-H2A	0.8900	C1-O3	1.248 (8)
N2-H2B	0.8900	$\mathrm{C} 1-\mathrm{C} 2$	1.496 (9)
N2-H2C	0.8900	C2-H2E	0.9700
N1-H1A	0.8900	C2-H2D	0.9700
$\mathrm{O} 2-\mathrm{Ptl}-\mathrm{O} 1$	83.82 (18)	$\mathrm{Pt1}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{O} 2-\mathrm{Pt} 1-\mathrm{N} 2$	94.6 (2)	H1A-N1-H1C	109.5
$\mathrm{O} 1-\mathrm{Pt} 1-\mathrm{N} 2$	176.9 (2)	H1B-N1-H1C	109.5
$\mathrm{O} 2-\mathrm{Pt} 1-\mathrm{N} 1$	176.77 (19)	C1-O1-Pt1	113.2 (4)
$\mathrm{O} 1-\mathrm{Pt} 1-\mathrm{N} 1$	93.18 (18)	C2-O2-Pt1	109.5 (4)
$\mathrm{N} 2-\mathrm{Pt} 1-\mathrm{N} 1$	88.4 (2)	$\mathrm{O} 3-\mathrm{C} 1-\mathrm{O} 1$	122.8 (6)
Pt1-N2-H2A	109.5	$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 2$	119.5 (6)
Pt1-N2-H2B	109.5	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	117.7 (5)
H2A-N2-H2B	109.5	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	114.7 (6)
$\mathrm{Pt} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{C}$	109.5	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{E}$	108.6
H2A-N2-H2C	109.5	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{E}$	108.6
H2B-N2-H2C	109.5	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	108.6
$\mathrm{Pt1}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	108.6
Pt1-N1-H1B	109.5	H2E-C2-H2D	107.6
H1A-N1-H1B	109.5		
$\mathrm{O} 2-\mathrm{Pt1}-\mathrm{O} 1-\mathrm{C} 1$	-6.9 (4)	$\mathrm{Pt1}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 3$	-178.2 (5)
N2-Pt1-O1-C1	53 (5)	$\mathrm{Pt} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	2.4 (8)
$\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{O} 1-\mathrm{C} 1$	174.3 (5)	$\mathrm{Pt} 1-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	-11.1 (7)
$\mathrm{O} 1-\mathrm{Pt} 1-\mathrm{O} 2-\mathrm{C} 2$	9.7 (4)	$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	-173.3 (6)
$\mathrm{N} 2-\mathrm{Pt} 1-\mathrm{O} 2-\mathrm{C} 2$	-167.7 (5)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	6.1 (10)
$\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{O} 2-\mathrm{C} 2$	31 (4)		

Hydrogen-bond geometry ($\left.\AA,^{\circ}{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{C} \cdots \mathrm{O}^{\mathrm{i}}$	0.89	2.01	$2.883(8)$	167
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots 2^{\mathrm{ii}}$	0.89	2.44	$3.107(7)$	132
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{iii}}$	0.89	2.45	$3.049(7)$	125
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{iv}}$	0.89	2.00	$2.888(7)$	173
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{C} \cdots \mathrm{O}^{\mathrm{V}}$	0.89	2.32	$3.108(7)$	147
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{ii}}$	0.89	2.21	$3.014(8)$	150
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots 3^{\mathrm{iii}}$	0.89	2.26	$3.010(7)$	142

Symmetry codes: (i) $x+1, y, z$; (ii) $-x, y-1 / 2,-z+1 / 2$; (iii) $-x+1 / 2,-y+2, z+1 / 2$; (iv) $x+1 / 2,-y+3 / 2,-z$; (v) $-x-1 / 2,-y+2, z+1 / 2$.

Fig. 1

supplementary materials

Fig. 2

